Formation of a Bicyclo[3,3,0]octane in a Novel Transannular Reaction By S. H. GRAHAM* and D. A. Jonas (Edward Davies Chemical Laboratory, Aberystwyth) 5-METHYLENECYCLO-OCTANECARBALDEHYDE (I)1 is isomerised by boiling in water in a nitrogen atmosphere to give a rather unstable aldehyde, m.p. $89-91^{\circ}$, v_{max} 1712 cm. $^{-1}$; semicarbazone, m.p. 208° , analysis correct for C₁₁H₁₉N₃O. Oxidation of the aldehyde (hydrogen peroxide) gave an acid, m.p. 184°, analysis correct for C₁₀H₁₆O₂, and ¹H n.m.r. spectrum including a singlet (3H) at τ 8.9, and no absorptions due to olefinic protons. Similarly reduction of the aldehyde gave an alcohol, m.p. 119°, for C₁₀H₁₈O, whose ¹H n.m.r. spectrum included singlets at τ 8.97 (3H) and 6.5 (2H) and no lower field signals. The aldehyde is therefore formulated as (II); its production constitutes a novel transannular reaction which is formally the addition of a reactive methylene to an olefinic bond. This presumably proceeds *via* the enol of (I) and is formulated as being acid-catalysed since acids are common impurities in aldehydes; (II) oxidises very readily and so could not be analysed. $$H_2CJ^{H^+}$$ CH_2 CH_2 $H_2CJ^{H^+}$ CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 (Received, June 17th, 1968; Com. 785.) ¹ K. H. Baggaley, W. H. Evans, S. H. Graham, D. A. Jonas, and D. H. Jones, Tetrahedron, 1968, 24, 3445.